
A STUDY ON THE EFFECT OF CACHE MEMORY IN

COMPUTING ENVIRONMENT WITH PERFORMANCE

ANALYSIS

S.V.SRIDHAR, DAYAKAR KONDAMUDI , HARISH KUMAR KOTHA , N.VAMSI KRISHNA

 ABSTRACT: Processors are generally able to perform operations on operands faster than the access time of large capacity main memory. Though

semiconductor memory which can operate at speeds comparable with the operation of the processor exists, it is not economical to provide all the main

memory with very high speed semiconductor memory. The problem can be alleviated by introducing a small block of high speed memory called a cache

between the main memory and the processor. The idea of cache memories is similar to virtual memory in that some active portion of a low-speed

memory is stored in duplicate in a higher-speed cache memory. When a memory request is generated, the request is first presented to the cache

memory, and if the cache cannot respond, the request is then presented to main memory.

Index Terms—memory, access, hit, miss. associative , cache , processor , data, address , performance ,
indexing , set ,

—————————— ——————————

I.INTRODUCTION:

 Why is this high speed memory necessary or beneficial? In
today’s systems , the time it takes to bring an instruction (or
piece of data) into the processor is very long when
compared to the time to execute the instruction. For
example, a typical access time for DRAM is 60ns. A 100
MHz processor can execute most instructions in 1 CLK or
10 ns. Therefore a bottle neck forms at the input to the
processor. Cache memory helps by decreasing the time it
takes to move information to and from the processor. A
typical access time for SRAM is 15 ns. Therefore cache
memory allows small portions of main memory to be
accessed 3 to 4 times faster than DRAM (main memory).

How can such a small piece of high speed memory improve
system performance? The theory that explains this
performance is called “Locality of Reference.” The concept
is that at any given time the processor will be accessing
memory in a small or localized region of memory. The
cache loads this region allowing the processor to access the
memory region faster. How well contains over 90% of the
addresses requested by the processor. This means that over
90% of So now the question, why not replace main memory
DRAM with SRAM? The main reason is cost. SRAM is
several times more expense than DRAM. Also, SRAM
consumes more power and is less dense than DRAM. Now
that the reason for cache has been established, let look at a

simplified model of a cache system.

I.I FUNCTIONING and PERFORMANCE:

The performance of a cache can be quantified in terms of

the hit and miss rates, the cost of a hit, and the miss

penalty, where a cache hit is a memory access that finds

data in the cache and a cache miss is one that does not.

When reading, the cost of a cache hit is roughly the time to

access an entry in the cache. The miss penalty is the

additional cost of replacing a cache line with one containing

the desired data.

Note that the approximation is an underestimate - control

costs have been left out. Also note that only one word is

being loaded from the faster memory while a whole cache

block's worth of data is being loaded from the slower

memory.

Since the speeds of the actual memory used will be

improving ‘independently'', most effort in ache design is

spent on fast control and decreasing the miss rates. We can

classify misses into three categories, compulsory misses,

capacity misses and conflict misses. Compulsory misses are

when data is loaded into the cache for the first time (e.g.

program start-up) and are unavoidable. Capacity misses

are when data is reloaded because the cache is not large

enough to hold all the data no matter how we organize the

data (i.e. even if we changed the hash function and made it

omniscient). All other misses are conflict misses - there is

Theoretically enough space in the cache to avoid the miss

but our fast hash function caused a miss anyway.Which is

the fetching a block when it is needed and is not already in

the cache, i.e. to fetch the required block on a miss.This

strategy is the simplest and requires no additional

hardware or tags in the cache recording the references,

except to identify the block in the cache to be replaced.

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013
ISSN 2229-5518

1077

IJSER © 2013
http://www.ijser.org

IJSER

Prefetch

 Which is fetching blocks before they are requested. A

simple prefetch strategy is to prefetch the (i+1)th block

when the ith block is initially referenced on the

expectation that it is likely to be needed if the ith block is

needed. On the simple prefetch strategy, not all first

references will induce a miss, as some will be to prefetched

blocks.

Selective fetch:

 Which is the policy of not always fetching blocks,

dependent upon some defined criterion, and in these cases

using the main memory rather than the cache to hold the

information. For example, shared writable data might be

easier to maintain if it is always kept in the main memory

and not passed to a cache for access, especially in multi-

processor systems. Cache systems need to be designed so

that the processor can access the main memory directly and

bypass the cache. Individual locations could be tagged as

non-cacheable.

I.2 PENTIUM CACHE : A CASE STUDY

This section examines internal cache on the Pentium(R)

processor. The purpose of this section is to describe the

cache scheme that the Pentium(R) processor uses and to

provide an overview of how the Pentium(R) processor

maintains cache consistency within a system.

The above section broke cache into neat little categories.

However, in actual implementations, cache is often a series

of combinations of all the above mentioned categories. The

concepts are the same, only the boundaries are different.

Pentium(R) processor cache is implemented differently

than the systems shown in the previous examples. The

 first difference is the cache system is internal to the

processor, i.e. integrated

helping to reduce the overall cost of the system. Another

advantage is the speed of memory request responses. For

example, a 100MHz Pentium(R) processor has an external

bus speed of 66MHz. All external cache must operate at a

maximum speed of 66mhz. However, an internal cache

operates at 100MHz. Not only does the internal cache

respond faster, it also has a wider data interface. An

external interface is only 64-bits wide while the internal

interface between the cache and processor prefetch buffer is

256-bits wide. Therefore, a huge increase in performance is

possible by integrating the cache into the CPU.

A third difference is that the cache is divided into two

separate pieces to improve performance - a data cache and

a code cache, each at 8K.. This division allows both code

and data to readily cross page boundaries without having

to overwrite one another.

The three different types of mapping used for the purpose

of cache memory are as follow, Associative mapping, Direct

mapping and Set-Associative mapping.

 Associative mapping: In this type of mapping the

associative memory is used to store content and addresses

both of the memory word. This enables the placement of

the any word at any place in the cache memory. It is

considered to be the fastest and the most flexible mapping

form.

- Direct mapping: In direct mapping the RAM is made use

of to store data and some is stored in the cache. An address

space is split into two parts index field and tag field. The

cache is used to store the tag field whereas the rest is stored

in the main memory. Direct mapping`s performance is

directly proportional to the Hit ratio.

- Set-associative mapping: This form of mapping is a

modified form of the direct mapping where the

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013
ISSN 2229-5518

1078

IJSER © 2013
http://www.ijser.org

IJSER

disadvantage of direct mapping is removed. Set-associative

mapping allows that each word that is present in the cache

can have two or more words in the main memory for the

same index address.

If the particular address is found in the cache, the block

of data is sent to the CPU, and the CPU goes about its

operation until it requires something else from memory.

When the CPU finds what it needs in the cache, a hit has

occurred. When the address requested by the CPU is not in

the cache, a miss has occurred and the required address

along with its block of data is brought into

the cache according to how it is mapped. Cache processing

in some computers is divided into two

sections: main cache and eavesdrop cache. Main cache is

initiated by the CPU within. Eavesdrop is done when a

write to memory is performed by another requestor (other

CPU or IOC). Eavesdrop searches have no impact on CPU

performances.

II .CACHE MAPPING TECHNIQUES.—

Cache mapping is the method by which the contents of

main memory are brought into the cache and referenced by

the CPU. The mapping method used directly affects

 the performance of the entire computer system. new Word

Press blog journalism server running on Sles 11 under

VMware 3.5 U3. The server surprisingly only had a dozen

users, surprising since a commercial Word Press provider i

talked to had up to 50,000 hits per day and dozens of users

on a box with 2 gigs of memory and no problems. Chances

are its a memory leak, probably from a Word Press plug-in

that’s causing all the problems, however being a linux

server there’s other ways to manage the memory. The

following is written for my staff to help bring them upto

speed on memory and its troubleshooting.

III. PRACTIAL PERFORMANCE EVALUATION

Start by checking your server has enough memory, if

processes are dying unexpectedly have a look at your

/var/log/messages file and see if you are running out of

memory or if processes are being killed of due to lack of

memory.

I normally use the free command first to see how memory

is being used, i like to use the –m flag to have the output

formatted in megs to simply reading the information, e.g.:

[Server]

total used free shared buffers cached

Mem: 3777 3516 260 0 228 2921

-/+ buffers/cache: 366 3410

Swap: 2055 0 2055

I could go over the output in depth however there’s a really

easy way to understand what’s happening, just look at the

line:

Used Free

-/+ buffers/cache: 366 3410

The first value is how much memory is being used and the

second value is how much memory can be freed for use by

applications. As long as you have memory that can be used

by applications you’re generally fine. Another aspect to

note is the output is the swap file:

Total Used Free

Swap: 2055 0 2055

Swapping generally only occurs when memory usage is

impacting performance, unless you manually change its

aggressiveness, more on that later.

Swap

If your server is heavily using swap things are bad, you’re

running out of memory. The exception to this is where you

have a distro with cache problems and may well decide to

max swapiness to reduce the problems cache created. To

find the space dedicated to swap type:

more /proc/swaps

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013
ISSN 2229-5518

1079

IJSER © 2013
http://www.ijser.org

IJSER

To find your current level of swapiness type:

cat /proc/sys/vm/swappiness

The default value is 60. However different systems require

different levels of swapiness, a server is not the same as

home computer. The value ranges between 0 and 100. At

100 the server will try and swap inactive pages, at 0

applications that want ram will shrink the ram to a tiny

fraction of cache, i.e. 0 less likely to swap, 100 very likely.

You can change the value by echoing a new one to the

/proc/sys/vm/swapiness file,

e.g. echo 10 > /proc/sys/vm/swapiness

To change the default level on boot edit the /etc/sysctl.conf

file (since kernel 2.6)

 e.g. vm.swappiness = 10

IV. MEMORY PROCESS ALLOCATION

Along with other aspects of the server, Virtual memory

statistics can be reported with vmstats, its main use for

memory diagnosis is that it reports page-ins and page-outs

as they happen. The best way to see this is by delaying the

output of vmwstat and it comes with options to do this,

otherwise it just reports averages since the last boot. State

the delay in seconds after the command followed by the

number of updates you wish to use, e.g. vmstat 2 4 runs

vmstat with a 2 second delay with 4 updates and so on e.g.

read the man for detailed info if need be, otherwise just

look at:

free – free memory

si – page ins

so – page outs

Page ins are expected e.g. when starting an application and

its information is paged in Regular page outs are not

wanted, occasional page outs are expected as the kernel

frees up memory. If page outs occure so often the server is

spending more time managing paging than running apps

performance suffers, this is refered to as thrashing. At this

point you could use top and ps to identify the processes

that are causing problems.

To see where all your memory is going the easiest way is to

use the top command, then press m to sort by memory,

press q or crtl+c to exit the top screen.

For more detailed information you can always use ps aux

and see which process are using memory and how much.

Apache and mysql are normally top users, along with psad

for busy web servers.

To sort the output of ps by memory you are supposed to be

able to use : ps aux –sort pmem

however i find this does not work on all flavours on linux

so i prefer to use the sort command to sort by memory

usage order : ps aux | sort –n +3

Then if i just want to look at the top 10 memory hogs or the

top memory hog i do a further pipe and use the tail

command, e.g. to find the 10 highest memory consuming

process: ps aux | sort –n +3 | tail -10

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013
ISSN 2229-5518

1080

IJSER © 2013
http://www.ijser.org

IJSER

If you want to monitor a processes memory usage then look

at the pid for the process and setup a cron job to pipe the

output of the command ps ev –pid=<PID> to a file you can

check later. If you want to check memory usage change

straight away keep entering the command: ps ev –

pid=<PID>

Once you know the process that is responsible for the

memory problems you can optimise it, or kill it. Here’s a

few common tricks for processes that can use a lot of

memory

Java

Java memory heaps need a limit to their sizes set by passing

a –Xmx option else the heap increases until you’re out of

memory. Custom Java apps should be able to use the java

command line –XmxNNm. NN = number of megs. With

JBoss and Tomcat check the settings in your relevant JBoss

(48m to 160m recommended) or Tomcat files (48m to 96m

recommended).

A rough way to work out the largest size you can set is to

stop the java process’s then look at the free –m output for

buffers as shown earlier and subtract the used from the free

to allow for unexpected memory usage, the resultant

number is the max memory you could set.

However keep in mind these are just guidelines, It’s up to

you to decide how high to set the memory limit for the

heap since only you really know how much memory you

have on the server and how memory the java process

needs.

Apache

Apache when it loads starts multiple servers and

distributes the traffic amongst these ‘servers’, the memory

usage can grow large as each loads libraries for php and

perl. You can adjust the number spawned with the settings:

StartServers

MinSpareServers

MaxSpareServers

These are in the httpd file. However depending on the

distro you might need to adjust the prefork values, google

for your os. The maxclients value can be worked out by

finding out the memoty usage of the largest apache client,

stopping apache, looking at free memory and dividing by

the free memory by the memory usage size of the largest

apache thread. Apache has default configuration for small,

medium and large servers. For many of you out there

hosting your own low traffic site you’ll get better

performance used the settings optimised for small servers.

SQL

However in some cases the problem is down to the cache.

Reducing cached memory

Linux memory management tries to minimise disk access.

To do this it will use any unused ram to cache, this is

because reading from disk is slow compared to reading

from memory. When the cache is used up the data that has

been there the longest is freed, theoretically data that is

used often will not be removed whilst data that is no longer

needed slowly gets moved out of the cache. When an

application needs memory the kernel should reduce the

size of the cache and free up memory. This is why people

sometimes get confused when using the free command,

since linux uses memory for cache it can appear to the

untrained eye that most of the memory has been used up.

This is in fact normal; it’s when the server can no longer

free memory from the cache that problems occur.

Freeing cache memory therefore does not usually make

your computer faster, but the converse, linux becomes

slower having to re read information to the cache. Ironic

then that some of the latest distro’s of linux, namely SUSE

and Mandriva seem to have forgotten this, there are

numerous reports of these, and other linux distro’s,

deciding cached memory is too important to free up for

actual processes. Luckily a solution was added in kernel

2.6.16 allowing us to free cached memory by writing to

/proc/sys/vm/drop_caches. There are three options

depending on what you need to do, clean the cache, free

dentries and inodes, and free cache, dentries and inodes,

we run sync first to ensure all cached objects are freed as

this is a non-destructive operation and dirty objects are not

freed:Tofree cache enter: sync; echo 1 >

/proc/sys/vm/drop_caches dentries and inodes : sync; echo

2 > /proc/sys/vm/drop_caches pagecache, dentries and

inodes: sync; echo 3 > /proc/sys/vm/drop_caches You can

automate these in a cron job e.g. hourly if you have the

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013
ISSN 2229-5518

1081

IJSER © 2013
http://www.ijser.org

IJSER

misfortune to use a distro with problems. Another issue

with cache is that if you copy a large amount of data, e.g. a

file tree, the copied data will end up in the cache flushing

out your existing cache. There is an interesting article on

improving linux performance by selectively preserving

cache state at:

V. OOM – 32 bit system memory problems (64
bit safe)

If you are running 32 bit linux and have enough memory

then you might be a victim of the out of memory (oom)

killer. However in 64 bit linux all memory is low memory

so you are safe from Oom, and out of memory errors are

really down to out of memory problems!

SOLUTION:

Oom problems can be easily solved by:

running the hugemem kernel

editing /etc/sysctl.conf with the below line to make the

kernel more aggressive about recovering low memory:

vm.lower_zone_protection = 250 or finally

editing /etc/sysctl.conf to disable oom on boot with the line:

vm.oom-kill = 0

CAUSE:

Oom kills processes on servers even when there is a large

amount of memory free. Oom problems are caused by low

memory exhaustion. Systems that are victim to Oom suffer

more as memory is increased since they have kernels where

memory allocation is tracked using low memory, so the

more memory you have the more low memory is used up

and the more you have problems. When low memory starts

running out Oom starts killing processes to keep memory

free!

VI.DIAGNOSIS

To check low and high memory usage, use the command

lines below, though the info is from a 64 bit system since

I’m sensible J

[Server] <<-PRODUCTION->> :~ # egrep ‘High|Low’

/proc/meminfo

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 3868296 kB

LowFree: 271872 kB

[Server] <<-PRODUCTION->> :~ # free -lm

total used free shared buffers cached

Mem: 3777 3512 265 0 228 2919

Low: 3777 3512 265

High: 0 0 0

-/+ buffers/cache: 364 3413

Swap: 2055 0 2055

VII. DETAILED MEMORY INFORMATION

To obtain detailed memory information type cat

/proc/meminfo e.g.:

I was going to type something up when i found a nice

explanation on red hats site which i’ve quoted and

amended where relevant below:

The information comes in the form of both high-level and

low-level statistics. First we will discuss the high-level

statistics

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013
ISSN 2229-5518

1082

IJSER © 2013
http://www.ijser.org

IJSER

High-Level Statistics

MemTotal: Total usable ram (i.e. physical ram minus a few

reserved bits and the kernel binary code)

MemFree: Is sum of LowFree+HighFree (overall stat)

Buffers: Memory in buffer cache. mostly useless as metric

nowadays

Cached: Memory in the pagecache (diskcache) minus

SwapCache

SwapCache: Memory that once was swapped out, is

swapped back in but still also is in the swapfile (if memory

is needed it doesn’t need to be swapped out AGAIN

because it is already in the swapfile. This saves I/O)

Detailed Level Statistics

VM Statistics

VM splits the cache pages into “active” and “inactive”

memory. The idea is that if you need memory and some

cache needs to be sacrificed for that, you take it from

inactive since that’s expected to be not used. The vm checks

what is used on a regular basis and moves stuff around.

When you use memory, the CPU sets a bit in the pagetable

and the VM checks that bit occasionally, and based on that,

it can move pages back to active. And within active there’s

an order of “longest ago not used” (roughly, it’s a little

more complex in reality). The longest-ago used ones can get

moved to inactive. Inactive is split into two in the above

kernel (2.4.18-24.8.0). Some have it three.

Active: Memory that has been used more recently and

usually not reclaimed unless absolutely necessary.

Inactive — The total amount of buffer or page cache

memory, in kilobytes, that are free and available. This is

memory that has not been recently used and can be

reclaimed for other purposes.

4 CONCLUSION

While cache size only had a limited impact on the synthetic

benchmarks such as PCMark05, the performance difference

in most real-life benchmarks was significant. This was

surprising at first, because experience tells us that

performance differences can typically be found in most

synthetic benchmarks, while little of it is eventually

reflected in real-life benchmarks

From this perspective, upgrading the L2 cache from up to 4

MB to a maximum of 6 MB for the upcoming 45-nm dual

core Penryn processors (Core 2 Duo E8000 series) makes a

lot of sense. Not only does the shrink from 65 to 45 nm give

Intel more headroom to increase the cache size, but the

company will again offer more performance thanks to the

increased cache size. However, the most important benefit

is due to how Intel can offer more processor variants with6

MB, 4 MB, 2 MB or even 1 MB L2 cache. In doing so, Intel

utilizes an even higher percentage of the dies on a wafer

despite some scattered defects that might have forced Intel

to throw dies away in the past. Large cache sizes seem to be

both important for both performance and Intel's balance

sheet.

When a request is made of the system the CPU requires

instructions for executing that request. The CPU works

many times faster than system RAM, so to cut down on

delays, L1 cache has bits of data at the ready that it

anticipates will be needed. L1 cache is very small, which

allows it to be very fast. If the instructions aren’t present in

L1 cache, the CPU checks L2, a slightly larger pool of cache,

with a little longer latency. With each cache miss it looks to

the next level of cache. L3 cache can be far larger than L1

and L2, and even though it’s also slower, it’s still a lot faster

than fetching from RAM.

5 REFERENCES

[1] K. HWANG, ADVANCED COMPUTER ARCHITECTURE,

MCGRAW-HILL, 1993.

[2] J.L. HENNESSY AND D.A. PATTERSON, COMPUTER

ARCHITECTURE A QUANTITATIVE APPROACH, SECOND

ED.,MORGAN KAUFMANN, CA, 1996.

[3] M.D. HILL, ASPECT OF CACHE MEMORY AND INSTRUCTION

BUFFER PERFORMANCE, PH.D. THESIS, UNIVERSITY OF CALIF. AT

BERKELEY, COMPUTER SCIENCE DIVISION, TECH. REP.

UCB/CSD 87/381, 1987.

[4] N.P. JOUPPI, “IMPROVING DIRECT MAPPED CACHE

PERFORMANCE BY THE ADDITION OF A SMALL FULLY

ASSOCIATIVE

[5]CACHE AND PREFETCHING BUFFERS,” PROC. 17TH ANNUAL

INT’L SYMPOSIUM ON COMPUTER ARCHITECTURE, SEATTLE, PP

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013
ISSN 2229-5518

1083

IJSER © 2013
http://www.ijser.org

IJSER

http://www.wisegeek.com/what-is-l1-cache.htm

